
PGF
A�new�progressive�file�format�for�lossy�and�lossless�image�compression�

�
Christoph Stamm

ETH Zurich, Institute of Theoretical Computer Science
ETH Zentrum, 8092 Zurich, Switzerland

stamm@inf.ethz.ch, http://www.inf.ethz.ch/personal/stamm/

ABSTRACT

We present a new image file format, called Progressive Graphics File (PGF), which is based on a discrete wavelet
transform with progressive coding features. We show all steps of a transform based coder in detail and discuss some
important aspects of our careful implementation. PGF can be used for lossless and lossy compression. It performs
best for natural images and aerial ortho-photos. For these types of images it shows in its lossy compression mode a
better compression efficiency than JPEG. This efficiency gain is almost for free, because the encoding and decoding
times are only marginally longer. We also compare PGF with JPEG 2000 and show that JPEG 2000 is about ten
times slower than PGF. In its lossless compression mode PGF has a slightly worse compression efficiency than JPEG
2000, but a clearly better compression efficiency than JPEG-LS and PNG. If both, compression efficiency and run-
time, is important, then PGF is the best of the tested algorithms for compression of natural images and aerial photos.

Keywords: still image file format, lossy/lossless image compression, progressive coding, discrete wavelet transform.

1 Introduction
There are several dozens of different image file formats.
Some of them use compression techniques while others do
not. Some formats support only lossy while others also
allow lossless compression. Some compression techniques
are more useful for images of natural scenes rather than
computer generated or artificial images. While stopping
here enumerating the different features the question comes
up: why does not exist a single image file format which
supports all these features together with additional function-
ality like progressive decoding, region of interest coding,
rate control, error resilience and so on? The answer is, there
is a format providing all these features: JPEG 2000.

JPEG 2000 will be the next ISO/ITU-T standard for still
image coding [SEA+00]. It is thought as a complement to
the current JPEG standards. It should be used for low bit-
rate compression and progressive transmission. It defines in
its Part I the core system and in Part II various extensions
for specific applications. It is based on the discrete wavelet
transform (DWT), scalar quantization, context modeling,
arithmetic coding and post-compression rate allocation.
JPEG 2000 shows a very good rate-distortion performance
(about 7% better than JPEG). Unfortunately, all the differ-
ent implementations of the core system we have tested show
a very bad encoding and decoding time compared to JPEG
(about eight times slower). This means, JPEG 2000 is not a
good solution if coding time is important or even crucial.

There are many applications where still image encoding
or decoding time is important or crucial. For example, in
professional digital photography a very fast image encoding
is necessary if a series of pictures is taken in a short time
and if compression is used. Compression is often used to
store more digital images on a flash-memory card of a
camera. Another example is a terrain explorer or a flight
simulator with dynamic scene management [Paj98, Sta01],
where aerial images are mapped onto the terrain to enhance

the realistic appearance [Spu00]. In such a terrain explorer
not only a very fast image decoding is important, but also a
progressive loading strategy helps in reducing the amount of
main memory needed. A third example is the transfer of
large images over a channel with a low bandwidth relative
to the amount of image data, e.g., transferring large images
through the Internet. In this example progressive decoding
is usually more important than fast decoding, because the
transferred data should be as small as possible. Of course, in
case of an image gallery fast decoding is still an obvious
advantage.

For progressive image refinement methods with com-
pression there is a trade-off between compression ratio,
image quality, and compression/decompression time. For
the same image quality methods with a lesser compression
ratio tend to be faster. Most of the approaches try to achieve
a maximum image quality for a given compression ratio.
We call these approaches quality driven. In contrast, we are
mainly interested in approaches with short decompression
time and reasonable quality. We call these approaches speed
driven.

In the following sections we discuss a new speed driven
progressive image format with scalable resolution, called
Progressive Graphics File (PGF)1. This image format
serves very fast progressive refinement and achieves for the
same compression ratios an image quality between JPEG
and JPEG 2000.

The next section is a detailed description of our new im-
age file format. Section 3 explains the comparison method-
ology employed in the results shown in Section 4. General
conclusions are drawn in Section 5.

In the following we assume you are familiar with the
one dimensional discrete wavelet transform (DWT). If not,
you may read for example [FCD+95] or [Gra95].

1 Progressive Graphics File (PGF) is a trademark of xeraina GmbH,
Zurich, Switzerland. Internet: http://www.xeraina.ch

2 Progressive Graphics File (PGF)

PGF provides lossless and lossy compression. It is based on
a fast, reversible integer DWT. Due to the hierarchical
structure of the DWT a progressive refinement process with
scalable resolution can be integrated naturally. The aban-
donment of floating point computations results in a crucial
speedup, with an often negligible loss of image quality. The
construction and reconstruction process chains are sche-
matically illustrated in Fig. 1. Compression techniques are
not much effective when applied to the original image, but
can lead to reasonable performance when applied to
quantized wavelet coefficients.

Fig.�1:�Steps�of�a�transform�based�coder�and�decoder.�

2.1 Color Transform

We assume that the input of our process chain is a colored
bitmap in RGB (Red, Green, Blue) format. In case of a
grayscale bitmap we omit the first step, the color transform.

Usually the three channels of a natural RGB image con-
tain both spatial and chromatic redundancy. An appropriate
channel transformation can result in reduced redundancy
and therefore, in a bundling of the energy in one channel.
This energy channel is usually called the achromatic and the
two remaining the chromatic channels. It is well-known that
the human eye is more light than color sensitive. So, the
resolution of the chromatic channels can be reduced without
a large visual quality loss and hence a better compression
ratio is possible.

Several popular color transforms of this type are known:
e.g. YIQ, YUV, and YCrCb, where Y always denotes the
achromatic channel. In both the YUV and the YCrCB color
space the achromatic channel collects between eighty and
ninety percent of the total energy. There are color trans-
forms with even better energy bundling (> 99%) but also
higher complexity [WGZ97].

Because PGF should be speed driven we are mainly in-
terested in a simple integer approach. The following integer
version of the RGB-YUV transform is used in PGF. The
forward color channel transform is defined for each pixel as
follows

GBV

GRU

Y nBGR

−=
−=

−= −++ 12
4

2

(1)

and the backward transform is defined as

,

2 1

4

GVB

GUR

YG nVU

+=
+=

+−= −+

(2)

where n denotes the number of bits in each R, G, and B
channel. While Y occupies also n bits, the chromatic chan-
nels U and V need in general n+1 bits. The integer imple-
mentation is very fast, because only addition and shifting
operations are used.

In the following steps of our process chain the color
transformed channels are used instead of the original image
channels.

2.2 Discrete Wavelet Transform

The second step in our coder chain is a tensor product
DWT. For each (color transformed) channel of an image we
separately apply a tensor product DWT. In the rest of this
paper we only discuss the appliance on one channel. This is
enough, because we use the same DWT for all channels.

A two dimensional tensor product DWT is based on a
one dimensional and ends up with a pyramid of wavelet
transform coefficients. In each transform step we apply the
one dimensional transform to the rows and columns of a
matrix and downsample the output by 2 (see also Fig. 2, on
page 4). In the beginning, the matrix is equal to the channel
of the image. After one step, one ends up with four sub-
bands: one average image LL, and three detail images LH,
HL, and HH, where L denotes a low-pass and H a high-pass
filter step. These four sub-bands together form a level. The
next wavelet transform step does the same decomposition
on the LL band of the last level. We continue while both the
width and the height of the LL band are larger than two
times the length of the larger filter. At the end we get a
pyramid of levels, where each level is almost a quarter in
size of the underlying level. The lowest level containing the
original channel in its LL sub-band is called level 0. The
three other sub-bands on level 0 are unused.

The crucial two points in our DWT are the choice of an
appropriate wavelet filter set and the correct and careful
integer implementation, which preserves the precision of the
wavelet coefficients.

In [VBL95] 4300 biorthogonal wavelet filter banks for
image compression have been tested according their im-
pulse and step response and their average peak signal noise
ratio (PSNR, see also Subsection 3.1) over eight test im-
ages using a eight bit quantization and a 16:1 compression.
In case of an integer implementation of the transform, the
possibility to use a small number of correct integer coeffi-
cients is important. For aerial ortho-photos used in flight
simulators a high impulse response peak may be good,
because a lot of artificial reference dots and crosses are
introduced into the image in order to indicate absolute
location. According to these criteria we have chosen a 5/3
filter set, where five and three denotes the length of the low-
and high-pass filter, respectively. The coefficients of the
filters are k(−1, 2, 6, 2, −1) and k(−2, 4, −2), with k =
1/(4√2). Another correct integer implementation with preci-
sion preservation based on a similar filter set is given in
[CF97].

Our integer implementation uses the fact that the appli-
cation of the factor of √2 in k can be replaced by a normali-
zation operation at the end of the transformation if the low-
pass filter is divided by √2 and the high-pass filter is multi-
plied by √2. This normalization operation uses only division
by 2 and multiplication by 2 and is therefore very fast in a
integer implementation. Even better, the normalization can

originial�
image�

quantization�DWT�
color�

trans form�
(RGB�to�YUV)�

encoding�

reconstructed�
image�

dequanti-
zation�

inverse�DWT�
inv.�color�
trans form�

(YUV�to�RGB)�
decoding�

encoded�
image�

be done at the same time as the quantization (cf. Subsection
2.3). We only discuss the exact transform for one level
decomposition and reconstruction and only for a one dimen-
sional signal. The extension to two dimensions is immediate
as the rows and columns can be treated into a sequence of
one dimensional signals. For the following algorithm, as-
sume that xi is the original signal where i ∈ [0, N−1] indi-
cates a particular point in the signal of length N. Let li and hi

be the low-pass and the high-pass sub-sampled outputs,
respectively. Further, let M be the have length equal to
N/2 − 1 and c1 and c2 are small integer constants.

The forward transform is computed according to
Equation 3 and the corresponding reconstruction (inverse
transform) is computed according to Equation 4.

In theory, both filters are first applied to the rows of a
matrix and then to the columns of the result. In such an
implementation with a large image, the application of the
filters on the rows needs only the fraction of time it needs
on the columns if the image is stored in rows. This is not
very remarkable, because CPU caches use the principle of
locality in space and time, and this locality is only given in
accessing memory locations on a small number of rows. It is
important to be aware of this and to implement the filter
application in a manner which maximizes space and time
locality. Therefore, we first filter only r rows at a time, then
apply the column filters on the result, and continue with the
next rows, where r is the minimum number of rows needed
to apply the column filters on the result. This concept helps
to drastically increase the space and time locality and hence
to reduce the transformation time.

 +++=

−=

 ++=

−=

 +++=

 ++
−=

 +
+=

 ++−=

−
−

−−

−
−

−

+
+

evenis

4

oddis,
2

1,...,1

4

2

2

2

21
2

21

11
1

21
2

1222
12

10
00

120
10

Nchh
xl

xxh

N
ch

xl

Mk
chh

xl

cxx
xh

ch
xl

cxx
xh

MM
NM

NNM

M
NM

kk
kk

kk
kk

(3)

+=

 +++=

 +−=

−=

 +++=

 ++−=

 +−=

−−

−−
−−

−
−

−
−−

−

even.is,

oddis

2

2

1,...,1

2

4

2

21

113
12

11
1

1222
112

21
2

10
00

Nxhx

N
cxx

hx

ch
lx

Mk
cxx

hx

chh
lx

ch
lx

NMN

NN
MN

M
MN

kk
kk

kk
kk

(4)

2.3 Quantization

The goal of the quantization step in our coder chain is to
reduce the information needed to store the image. This is the
only step that introduces information loss. One can distin-
guish at least two kinds of quantization: vector and scalar.
Vector quantization is in general more powerful than scalar
quantization. In case of vector quantization, one replaces a
group of coefficients (a vector) with one symbol. The key is
to find the right way of grouping the coefficients such that
as few symbols as possible are needed. For more details on
vector quantization in combination with wavelets we refer
to [ABMD92].

In case of scalar quantization, one divides the real or in
our case the integer axis in a number of non-overlapping
intervals, each corresponding to a symbol si. Each coeffi-
cient is now replaced by the symbol si associated with the
interval to which it belongs. The intervals and symbols are
generally kept in a quantization table. An even simpler form
of a scalar quantization is a uniform quantization with fixed
interval length. In this form it is not even necessary to store
a quantization table. Storing the interval length and the
range is just enough, but the missing adaptivity in the uni-
form scalar quantization could lead to worse image quality.
Sometimes, the scalar quantization is combined with a
threshold, called dead zone. The idea of that threshold is to
get a larger interval in which all wavelet transform coeffi-
cients are set to zero and therefore, to reduce a large number
of coefficients and to produce a sparse matrix. It is impor-
tant to omit the threshold in the quantization step of the last
LL sub-band, because quantization errors in this sub-band
lead to very poor image quality.

In PGF we use a uniform scalar quantization with dead
zone. The interval length is restricted to powers of two. This
makes it simple to combine the quantization with the nor-
malization factor from the modified filter coefficients. This
very simple quantization maximizes speed and minimizes
storage, but at the same time it reduces the number of possi-
ble compression rates if quantization is the only source of
information loss.

The dequantization step in the reconstruction process is
the inverse of the quantization. Of course, we can recon-
struct the exact values of the coefficients only if the interval
length is equal to one. In all the other cases we reconstruct
the wavelet coefficients incorrectly with the lower boundary
of their interval.

2.4 Coding

The last step in our encoder chain is the encoding of the
quantized wavelet transform coefficients into a bitstream.
The problem in this step is finding a fast, storage efficient,
and reversible method. Usually, the coding phase is a se-
quence of several different steps containing at least a reor-
dering and a compression step. The goal of the reordering
step is to cluster the wavelet coefficients in such a way that
the compression step is more efficient.

In PGF we use a progressive wavelet coder (PWC) very
similar to the coder presented in [Mal99]. PWC is based on
progressive image coding, in which the bitstream is embed-
ded, that is, representations of the image at any rate up to
the encoding rate can be obtained simply by keeping the
bitstream prefix corresponding to a desired rate. Embedded

encoding can be achieved simply by applying the well-
known bit-plane encoding technique [SB66] to the scalar-
quantized wavelet coefficients. The most significant bit-
planes naturally contain many zeros, and therefore can be
compressed without loss via entropy coders such as run-
length coders. Since the reordering step influences the
efficiency of the following compression step, it has to be
chosen carefully and in knowledge of the type of the follow-
ing compression step. In our PWC coder we use bit-plane
coding of fixed size macroblocks.

In the following we describe both the reordering and
compression step of the encoder. We omit the discussion of
the decoder, because its functioning is even simpler and
more or less inverse to the encoder.

Fig.�2:�� Scanning�order�for�defining�blocks�of�wavelet�
coefficients.�

2.4.1 Reordering Step

Bit-plane encoding is more efficient if we reorder the wave-
let coefficients in such a way that coefficients with small
absolute values tend to get clustered together. That trans-
lates into longer runs of zeros in the bit-planes, which can
be encoded at lower bit rates. An efficient algorithm for
achieving such clustering is the embedded zero tree coder
[Sha93]. A similar technique to zero trees is used in the set
partitioning in hierarchical trees (SPIHT) coder [SP96]. The
SPIHT coder is very efficient in clustering zero-valued
coefficients at any particular bit-plane; it attains very good
compression results even without entropy encoding of the
bit-plane symbols. SPIHT is one of the most efficient image
compression algorithms reported to date. The PWC in PGF
uses also clustering of the coefficients, but only in a sim-
pler, data-independent and therefore faster way.

In a first step, we divide each sub-band into rectangular
blocks: the LL and HH sub-bands into blocks of size 8×8
and the LH and HL sub-band into blocks of size 4×4. This
partitioning scheme is depicted in Fig. 2. In a second step,
we collect these blocks on each pyramid level, starting at
the top and ending at level 1. We start with the blocks of the
LL sub-band of the topmost level. Then on each level, first

we alternately collect the blocks of the LH and the HL sub-
band and continue with the blocks of the HH sub-band.

The reason for the alternate visiting of the LH and HL
wavelet coefficients within the same level is simple. Assum-
ing the original image has a particular feature at some spa-
tial location, it is likely that clusters of both the LH and HL
sub-bands, corresponding to that location, will have values
of the same order. Therefore, by ensuring that pairs of
blocks from the LH and HL sub-bands corresponding to the
same spatial location appear contiguously in a macroblock,
we are more likely to create clusters of similar values.

An obvious simpler clustering scheme with block sizes
set to 1×1 does not perform in the same manner.

In the last step, we visit each collected block in the same
order as collected and we write all coefficients of a block
into a macroblock of fixed size L. L is usually set to a power
of two, for example 4096.

2.4.2 Compression Step

In our compression step we compress and encode each
macroblock of the previous reordering step independently.
The output of this step is usually written into a file. We use
an adaptive run-length/Rice (RLR) coder [Lan83] to encode
the non-zero bit-planes of a macroblock. Any efficient coder
for asymmetric binary sources would suffice. For instance,
adaptive arithmetic coding (AC) can be used instead of the
adaptive RLR coder. The RLR coder is used, because of its
simple implementation and its low time complexity. The
RLR coder with parameter k (logarithmic length of a run of
zeros) is also known as the elementary Golomb code of
order 2k [OWS98]. In practice the RLR coder is very close
to being an optimal variable-to-variable length coder
[Fab92].

In our PWC we use the adaptive bit-plane encoding
technique described in [Mal99] with minor changes. To see
the difference we shortly summarize the original technique.

Suppose we start encoding a bit-plane v = 0, the most
significant bit-plane, and proceed with increasing v, towards
the least significant bit-plane. The algorithm works as fol-
lows:

1. Start with a macroblock of coefficients ci and de-
fine the significance flag vector z such that zi = 0
for all i. Set v = 0.

2. Let bi be the v-th bit of |ci|. Break the set {bi} into
two sets: BS = {bi | zi = 0} and BR = {bi | zi = 1}.

3. Encode the sequence of bits in BS by a RLR coder
and append the output to the bitstream.

4. Append the sequence of bits in BR to the bitstream.
5. Set zi = 1 for all i such that bi ∈ BS and bi = 1.
6. If the last bit-plane has not been coded yet, in-

crease v and return to Step 2.
In Step 3, the sequence of bits in BS has often long runs of
zeros, specially in the initial bit-planes. We encode them
with the RLR coder defined in Table 1.

Codeword Input bit sequence

0 Run of 2k zeros
1 d 0 Run of d < 2k zeros followed by a 1, ci ≥ 0
1 d 1 Run of d < 2k zeros followed by a 1, ci < 0

Table�1:�RLR�coder�for�binary�sources�with�parameter�k.�

LH�

HL�
LH�

HL�

HL�

LH�

LL�

HH�

HH�

HH�

0� 1� 3�

2� 4�

5� 7�

6� 8�

9�

42�

10�

43�

44� 45�

174�

11�

41�

12�

40�

19�

13�

18�

46�48�

49�47�

178�

175�

189�

176�

179�

177�

180�

186� 187�

181�

185�

188�

184�183�182�

...�

...�

...�

...�

...�

...�

The optimal value of the parameter k depends on the prob-
ability that ci = 0. The higher the probability the larger we
should set k. Since we do not know the optimal value of k,
we use an adaptive strategy. We start with k = 0 and adapt k
in a backward fashion, increasing it every time we emit a
codeword ‘0’, and decreasing it every time we emit a code-
word starting with a ‘1’.

Until here, our compression step is identical to the cor-
responding coding step in [Mal99]. The difference is de-
scribed in the following paragraph.

We already mentioned that bit-planes with a small v
have long runs of zeros and therefore a good run-length
performance. Unfortunately, the performance of the RLR
coder decreases with increasing v and can even be negative,
which means that the input bit sequence is shorter than the
corresponding output of the RLR coder. The input sequence
‘01001’ is a simple example with a negative RLR perform-
ance. The corresponding output is ‘010s011s’, where s is a
substitute for a sign bit. The output length is 8 and the input
length is 5+2, where 2 is the length of the number of ones in
the input. If this happens, then we throw the output away
and copy the input bit sequence as it is to the output. To
specify if run-length coding has been used for the sequence
of bits in BS or not, we add an additional flag in front of the
corresponding output. In the decoder we read this flag and
know immediately how we should interpret the bitstream.
With this additional step we decrease the upper bound for
the output length of a bit-plane.

3 Comparison Methodology
A major concern in coding techniques is the compression
efficiency, but it is not the only factor that determines the
choice of a particular algorithm for an application. Most
applications also require a fast runtime and other features in
a coding algorithm than simple compression efficiency.
This is often referred to as functionalities. Examples of such
functionalities are progressive decoding, or ability to dis-
tribute quality in a non-uniform fashion across the image. In
Section 4 we report on trade-off between compression
efficiency and runtime.

3.1 Compression Efficiency

Compression efficiency is measured for lossless and lossy
compression. For lossless coding it is simply measured by
the achieved compression ratio for each one of the test
images. For lossy coding the root mean square error
(RMSE), defined as

()∑ −=
=

n

i
ii qp

n
RMSE

1

21
(5)

is used, as well as the corresponding peak signal to noise
ratio (PSNR in dB), defined as

RMSE

piiPSNR
max

10log20= , (6)

where n is the number of pixels, pi are the pixels in the
original and qi are the corresponding pixels in the com-
pressed image. For an image with more than one channel
(e.g. RGB image), we define the PSNR as the average over
all PSNRs of the separate channels. A PSNR of 30 dB
corresponds to a low quality image, while 50 dB means a

visually almost perfect reconstruction. Although RMSE and
PSNR are known to not always faithfully represent visual
quality, they are the most established and well-known
measure that works reasonably well across a wide range of
compression ratios.

3.2 Runtime

Runtime is only a rough indication of algorithmic complex-
ity. At least it is simple to measure, since evaluating com-
plexity of an algorithm or an application is a more difficult
issue. Complexity means different things for different appli-
cations. It can be asymptotical time and space complexity,
total working memory, the used CPU instruction set, num-
ber of CPU cycles, number of hardware gates, etc. Further-
more, some of these numbers are very dependent on optimi-
zation and other factors of the different implementations.

We provide the runtimes of different file formats on a
Windows 2000 based PC laptop with a 1 GHz Mobile Pen-
tiumTM III processor, 256 KByte cache memory and 384
MByte of RAM. All tested file formats, except WinZip,
have been written in C or C++ and have been compiled with
Microsoft Visual C++, version 6, with ‘Maximize Speed’
enabled.

The measured encoding times contain the steps needed
to write an target image, including closing the file but ex-
cluding the time needed to open and read the source image.
The decoding times are measured before the image has been
opened and after the red, green, and blue pixels have been
written to a memory buffer.

4 Tests and Results
To prove the quality of our PGF we evaluate several differ-
ent image file formats and PGF with two different test sets.
We test compression efficiency and runtime in lossless and
lossy compression mode. The competitive file formats
depend on lossless or lossy compression mode. In lossless
mode we test PGF against WinZip2, JPEG 20003, JPEG-
LS4, and PNG5. In lossy mode we test PGF against JPEG6

and JPEG 2000.
The DWT of JPEG 2000 is dyadic and can be per-

formed with either a reversible Le Gall 5/3 taps filter, which
provides for lossless coding, or a non-reversible biorthogo-

2 WinZip, version 6.3 SR-1, is a registered trademark of Nico Mak
Computing, Inc.
3 JPEG 2000, implementation of the JasPer project. The JasPer
Project is a collaborative effort between Image Power, Inc. and the
University of British Columbia. The objective of this project is to
develop a software-based reference implementation of the codec
specified in the JPEG-2000 Part-1 standard (i.e., ISO/IEC 15444-1).
This software has also been submitted to the ISO for inclusion in
the JPEG-2000 Part-5 standard (as an official reference implemen-
tation).; Internet: http://www.ece.ubc.ca/~mdadams/jasper/
4 JPEG-LS, version 2.2, implementation of SPMG group of the
University of British Columbia; Internet: http://spmg.ece.ubc.ca/
5 Portable Network Graphics (PNG) is a W3C recommendation for
coding still images which has been elaborated as a patent free
replacement of GIF; the libpng implementation, version 1.0.12;
Internet: ftp://ftp.uu.net/graphics/png/
6 JPEG, implementation of the Independent JPEG Group, version
6b; Internet: http://www.ijg.org/

nal 9/7 filter, which provides for higher compression but
does not do lossless compression. The quantization is an
embedded scalar approach with threshold and is independ-
ent for each sub-band. Each sub-band is entropy coded
using context modeling and bit-plane arithmetic coding. The
generated code-stream is parseable and can be resolution,
quality, position or component progressive, or any combina-
tion thereof.

In our tests we only use the reversible 5/3 filter of JPEG
2000, because it is based on integers and is therefore clearly
faster than the 9/7 filter which is based on floating point
operations. For PNG the maximum compression setting is
used, while for JPEG-LS the default options are chosen.

4.1 Test Sets

The first test set, called PGF test set, contains seven images
covering various types of imagery. The images ‘woman’
(512×768), ‘hibiscus’ (768×512), ‘houses’ (768×512), and
‘redbrush’ (1024×960) are natural. The images ‘woman’,
‘hibiscus’, and ‘houses’ are identical with the images num-
ber four, seven, and eight of our second test set. The image
‘compound’ (1400×1050) is a screen shot consisting of text,
charts and computer graphics, ‘aerial’ (1024×1024) is an
aerial ortho-photo, and ‘logo’ (615×225) is a computer
generated logo consisting of text. All these images have a
depth of 24 bit per pixel.

The second test set, called Kodak test set, contains the
first eight images of the Kodak true color test set
(768×512)7. All images in the Kodak test set are natural and
have a depth of 24 bit per pixel.

In order to make better comparisons with other method-
ologies, we also perform our technique on the black and
white image ‘Lena’ (512×512, 8 bit per pixel).

4.2 Lossless Compression

Table 2 summarizes the lossless compression efficiency and
Table 3 the coding times of the PGF test set. For WinZip we
only provide average runtime values, because of missing
source code we have to use an interactive testing procedure
with runtimes measured by hand. All other values are meas-
ured in batch mode.

WinZip JPEG-
LS

JPEG
2000

PNG PGF

aerial 1.352 2.073 2.383 1.944 2.314
compound 12.451 6.802 6.068 13.292 4.885
hibiscus 1.816 2.200 2.822 2.087 2.538
houses 1.241 1.518 2.155 1.500 1.965
logo 47.128 16.280 12.959 50.676 10.302
redbrush 2.433 4.041 4.494 3.564 3.931
woman 1.577 1.920 2.564 1.858 2.556
average 9.71 4.98 4.78 10.70 4.07

Table�2:�Lossless�compression�ratios�of�the�PGF�test�set.�

In Table 2 it can be seen that in almost all cases the best
compression ratio is obtained by JPEG 2000, followed by
PGF, JPEG-LS, and PNG. This result is different to the
result in [SEA+00], where the best performance for a simi-

7 The lossless true color Kodak test images in png format are avail-
able at: http://sqez.home.att.net/thumbs/Thumbnails.html

lar test set has been reported for JPEG-LS. PGF performs
between 0.5% (woman) and 21.3% (logo) worse than JPEG
2000. On average it is almost 15% worse. The two excep-
tions to the general trend are the ‘compound’ and the ‘logo’
images. Both images contain for the most part black text on
a white background. For this type of images, JPEG-LS and
in particular WinZip and PNG provide much larger com-
pression ratios. However, in average PNG performs the
best, which is also reported in [SEA+00].

These results show, that as far as lossless compression is
concerned, PGF performs reasonably well on natural and
aerial images. In specific types of images such as ‘com-
pound’ and ‘logo’ PGF is outperformed by far in PNG.

WinZip JPEG-LS JPEG 2000 PNG PGF
enc dec enc dec enc dec enc dec enc dec

a 1.11 0.80 5.31 4.87 3.70 0.19 0.99 0.77
c 1.61 0.38 3.46 3.06 2.95 0.18 0.95 0.80
hi 0.69 0.30 1.45 1.29 1.77 0.10 0.35 0.27
ho 0.65 0.30 1.62 1.47 0.85 0.11 0.41 0.32
l 0.09 0.02 0.26 0.21 0.16 0.01 0.07 0.06
r 0.65 0.44 4.29 4.01 3.61 0.16 0.66 0.59
w 0.39 0.30 1.76 1.63 1.08 0.08 0.35 0.27

av 1.14 0.37 0.74 0.36 2.59 2.36 2.02 0.12 0.54 0.44

Table�3:�Runtime�of�lossless�compression�of�the�PGF�
test�set�

Table 3 shows the encoding (enc) and decoding (dec) times
(measured in seconds) for the same algorithms and images
as in Table 2. JPEG 2000 and PGF are both symmetric
algorithms, while WinZip, JPEG-LS and in particular PNG
are asymmetric with a clearly shorter decoding than encod-
ing time. JPEG 2000, the slowest in encoding and decoding,
takes more than four times longer than PGF. This speed
gain is due to the simpler coding phase of PGF. JPEG-LS is
slightly slower than PGF during encoding, but slightly faster
in decoding images. WinZip and PNG decode even more
faster than JPEG-LS, but their encoding times are also
worse. PGF seems to be the best compromise between
encoding and decoding times.

Our PGF test set clearly shows that PGF in lossless
mode is best suited for natural images and aerial ortho-
photos. PGF is the only algorithm that encodes the three
MByte large aerial ortho-photo in less than second without a
real loss of compression efficiency. For this particular im-
age the efficiency loss is less than three percent compared to
the best. These results should be underlined with our second
test set, the Kodak test set.

Fig.�3:�Lossless�compression�results�of�the�Kodak�test�set.�

0.00

0.50

1.00

1.50

2.00

2.50

3.00

ratio enc dec

ra
tio

,�t
im

e�
[s

]

WinZip
PNG
JPEG-LS
PGF
JPEG�2000

Fig. 3 shows the averages of the compression ratios (ratio),
encoding (enc), and decoding (dec) times over all eight
images. JPEG 2000 shows in this test set the best compres-
sion efficiency followed by PGF, JPEG-LS, PNG, and
WinZip. In average PGF is eight percent worse than JPEG
2000. The fact that JPEG 2000 has a better lossless com-
pression ratio than PGF does not surprise, because JPEG
2000 is more quality driven than PGF. However, it is re-
markable that PGF is clearly better than JPEG-LS (+21%)
and PNG (+23%) for natural images.

JPEG-LS shows in the Kodak test set also a symmetric
encoding and decoding time behavior. Its encoding and
decoding times are almost equal to PGF. Only PNG and
WinZip can faster decode than PGF, but they also take
longer than PGF to encode.

If both compression efficiency and runtime is important,
then PGF is clearly the best of the tested algorithms for
lossless compression of natural images and aerial ortho-
photos.

In the third test we perform our lossless coder on the
‘Lena’ image. The compression ratio is 1.68 and the encod-
ing and decoding takes 0.25 and 0.19 seconds, respectively.

4.3 Lossy Compression

Originally, PGF has been designed to quickly and progres-
sively decode lossy compressed aerial images. A lossy
compression mode has been preferred, because in an appli-
cation like a terrain explorer texture data (e.g., aerial ortho-
photos) is usually mid-mapped filtered and therefore lossy
mapped onto the terrain surface. In addition, decoding lossy
compressed images is usually faster than decoding lossless
compressed images.

Fig.�4:�PSNR�of�lossy�compression�in�relation�to�
compression�ratio.�

In the next test series we evaluate the lossy compression
efficiency of PGF. One of the best competitors in this area
is for sure JPEG 2000. Since JPEG 2000 has two different
filters, we used the one with the better trade-off between
compression efficiency and runtime. On our machine the
5/3 filter set has a better trade-off than the other. However,
JPEG 2000 has in both cases a remarkable good compres-
sion efficiency for very high compression ratios but also a
very poor encoding and decoding speed. The other competi-
tor is JPEG. JPEG is one of the most popular image file
formats. It is very fast and has a reasonably good compres-

sion efficiency for a wide range of compression ratios. The
drawbacks of JPEG are the missing lossless compression
and the often missing progressive decoding.

Fig. 4 depicts the average rate-distortion behavior for
the images in the Kodak test set when fixed (i.e., non-
progressive) lossy compression is used. The PSNR of PGF
is on average 3% smaller than the PSNR of JPEG 2000, but
3% better than JPEG. These results are also qualitative valid
for our PGF test set and they are characteristic for aerial
ortho-photos and natural images.

Because of the design of PGF we already know that
PGF does not reach the compression efficiency of JPEG
2000. However, we are interested in the trade-off between
compression efficiency and runtime. To report this trade-off
we show in Table 4 a comparison between JPEG 2000 and
PGF and in Fig. 5 (on page 8) we show for the same test
series as in Fig. 4 the corresponding average decoding times
in relation to compression ratios.

Table 4 contains for seven different compression ratios
(mean values over the compression ratios of the eight im-
ages of the Kodak test set) the corresponding average en-
coding and decoding times in relation to the average PSNR
values. In case of PGF the encoding time is always slightly
longer than the corresponding decoding time. The reason for
that is that the actual encoding phase (cf. Subsection 2.4.2)
takes slightly longer than the corresponding decoding phase.
For six of seven ratios the PSNR difference between JPEG
2000 and PGF is within 3% of the PSNR of JPEG 2000.
Only in the first row is the difference larger (21%), but
because a PSNR of 50 corresponds to an almost perfect
image quality the large PSNR difference corresponds with
an almost undiscoverable visual difference. The price they
pay in JPEG 2000 for the 3% more PSNR is very high. The
creation of a PGF is five to twenty times faster than the
creation of a corresponding JPEG 2000 file, and the decod-
ing of the created PGF is still five to ten times faster than
the decoding of the JPEG 2000 file. This gain in speed is
remarkable, especially in areas where time is more impor-
tant than quality, maybe for instance in real-time computa-
tion.

JPEG 2000 5/3 PGF
Ratio enc dec PSNR enc dec PSNR
2.7 1.86 1.35 64.07 0.34 0.27 51.10
4.8 1.75 1.14 47.08 0.27 0.21 44.95
8.3 1.68 1.02 41.98 0.22 0.18 40.39
10.7 1.68 0.98 39.95 0.14 0.13 38.73
18.7 1.61 0.92 36.05 0.12 0.11 35.18
35.1 1.57 0.87 32.26 0.10 0.09 31.67
72.9 1.54 0.85 28.86 0.08 0.08 28.37

Table�4:��Trade-off�between�quality�and�speed�for�the�
Kodak�test�set�

In Fig. 5 we see that the price we pay in PGF for the 3%
more PSNR than JPEG is low: for small compression ratios
(< 9) decoding in PGF takes two times longer than JPEG
and for higher compression ratios (> 30) it takes only ten
percent longer than JPEG. These test results are characteris-
tic for both natural images and aerial ortho-photos.

Again, in the third test series we only use the ‘Lena’ im-
age. We run our lossy coder with six different quantization
parameters and measure the PSNR in relation to the result-
ing compression ratios. The results (ratio: PSNR) are: (1.82:

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90 100 110

PSNR

JPEG�2000

PGF

JPEG

53.20); (2.57: 45.35); (4.48: 39.85); (9.20: 36.06); (17.70:
33.29); (33.98: 30.58).

Fig.�5:�Decoding�time�in�relation�to�compression�ratio�

5 Conclusions
For our three dimensional terrain explorer we looked for an
image file format that meets our demands: fast compression
and decompression, lossy and maybe also lossless compres-
sion with good compression efficiency, and progressive
image coding in terms of increasing resolution. Because we
could not find an established image file format meeting all
these demands, we designed and developed a new file for-
mat, called PGF, which is based on a discrete wavelet trans-
form with progressive coding features.

We presented several changes to an earlier presented
wavelet coders, like a new reordering scheme for wavelet
coefficients or a new compression step during the encoding
phase. Additionally, we carefully implemented all parts
necessary for a working encoder and decoder, and we re-
ported in several test series the efficiency of our algorithm.

PGF can be used for lossless and lossy compression. It
performs best for natural images and aerial ortho-photos.
For these types of images it shows in its lossy compression
mode a three percent better compression efficiency than
JPEG with only ten to hundred percent more encoding time.
In contrast, JPEG 2000 achieves a seven percent better
compression efficiency than JPEG, but has a ten times
longer decoding time. This means, the price we pay in PGF
for the additional feature of progressive coding is very low.

In lossless compression mode it also performs well for
natural images and aerial ortho-photos. For these image
types it has a eight percent worse compression efficiency
than JPEG 2000, but a 21% better compression efficiency
than JPEG-LS and 23% better than PNG. PGF is more than
four times faster than JPEG 2000. Therefore, if both com-
pression efficiency and runtime is important, then PGF is
clearly the best of the tested algorithms for lossless com-
pression of natural images and aerial ortho-photos.

References
[ABMD92] M. Antonini, M. Barlaud, P. Mathieu, I.

Daubechies. Image Coding using the Wavelet
Transform. In IEEE Transactions on Image
Processing, 1(2):205–220, 1992.

[CF97] H. Chao, P. Fisher. An Approach to Fast Inte-
ger Reversible Wavelet Transforms for Image
Compression. CompSci, 1996.

[Fab92] F. Fabris. Variable-length to variable-length
source coding: a greedy step-by-step algorithm.
In IEEE Trans. Inform. Theory, 38: 1609–1617,
1992.

[FCD+95] A. Fournier, M. F. Cohen, T. D. DeRose, M.
Lounsbery, L.-M. Reissell, P. Schröder, W.
Sweldons. Wavelets and their Applications in
Computer Graphics. Course Notes, SIG-
GRAPH ’95, 1995.

[Gra95] A. Graps. An Introduction to Wavelets. In
IEEE Computational Science and Engineering,
2(2), Los Alamitos, 1995.

[Lan83] G. G. Langdon, Jr. An adaptive run-length
encoding algorithm. In IBM Tech. Discl. Bull.,
26:3783–3785, 1983.

[Mal99] H. S. Malvar. Fast Progressive Wavelet Cod-
ing. Proceedings IEEE DCC’99, 1999.

[OWS98] E. Ordentlich, M. Weinberger, G. Seroussi. A
low-complexity modeling approach for embed-
ded coding of wavelet coefficients. In Proceed-
ings Data Compression Conference, 408–417,
Snowbird, Utah, 1998.

[Paj98] R. Pajarola. Large scale terrain visualization
using the restricted quadtree triangulation. In
Proceedings Visualization 98, Los Alamitos.
IEEE Computer Society Press, 1998.

[SB66] J. W. Shwartz, R. C. Baker. Bit-plane encod-
ing: a technique for source encoding. In IEEE
Trans. Aerospace Electron. Syst., 2:385–392,
1966.

[SEA+00] S. Santa Cruz, T. Ebrahimi, J. Askelof, M.
Larsson, C. Christopoulos. An analytical study
of JPEG 2000 functionalities. In Proceedings of
SPIE of the 45th annual SPIE meeting, Applica-
tions of Digital Image Processing XXIII, vol.
4115, 2000.

[Sha93] J. M. Shapiro. Embedded Image Coding Using
Zerotrees of Wavelet Coefficients. In IEEE
Transactions on Signal Processing, 41(12):
3445–3462, 1993.

[SP96] A. Said, W. A. Pearlman. A new, fast, and
different image codec based on set partitioning
in hierarchical trees. In IEEE Transactions on
Circuits and Systems for Video Tech., 6:243–
250, 1996.

[Spu00] R. Spuler. Progressive Texture. Diplomarbeit,
Institute of Theoretical Computer Science,
ETH Zurich, 2000.

[Sta01] C. Stamm. Algorithms and Software for Radio
Signal Coverage Prediction in Terrains. Ph. D.
thesis, Institute of Computer Science, ETH Zu-
rich, 2001.

[VBL95] J. D. Villasenor, B. Belzer, J. Liao. Wavelet
Filter Evaluation for Image Compression.
IEEE Transactions on Image Processing, 1995.

[WGZ97] S. G. Wolf, R. Ginosar, Y. Y. Zeevi. Spatio-
chromatic image enhancement based on a
model of human visual information processing,
1997.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80 90 100 110

s

JPEG�2000

PGF

JPEG

